

TRABALHO DE RECUPERAÇÃO 1° TRIMESTRE 2025

ALUNO (A):		TURMA:
VALOR: 12,0	Nota:	

INSTRUÇÕES: Todas as questões devem ser respondidas a CANETA.

1A 1 H 1,01	2 2A	CLASSIFICAÇÃO PERIÓDICA DOS ELEMENTOS com massas atômicas referidas ao isótopo 12 do Carbono 13 14 15 16 17 3A 4A 5A 6A 7A									17 7A	2 He 4,00					
3 Li 6,94	4 Be 9,01	Elementos de transição															
11 Na 23,O	12 Mg 24,3	3 3B	4 4B	5 5B	6 6B	7 7B	8	- 8B	10	11 1B	12 2B	13 AI 27,0	14 Si 28,1	15 P 31.0	16 S 32,1	17 CI 35.5	18 Ar 39,9
19 K 39,1	20 Ca 40.1	21 Sc 45.0	22 Ti 47,9	23 V 50.9	24 Cr 52.0	25 Mn 54.9	26 Fe 55.8	27 Co 58.9	28 Ni 58.7	29 Cu 63.5	30 Zn 65.4	31 Ga 69.7	32 Ge 72.6	33 As 74.9	34 Se 79.0	35 Br 79.9	36 Kr 83.8
37 Rb 85,5	38 Sr 87.6	39 Y 88.9	40 Zr 91.2	41 Nb 92.9	42 Mo 96.0	43 Tc (99)	44 Ru 101	45 Rh 103	46 Pd 106	47 Ag 108	48 Cd 112	49 In 115	50 Sn	51 Sb 122	52 Te 128	53 127	54 Xe 131
55 Cs 133	56 Ba 137	57-71 Série dos Lantaní- deos	72 Hf 179	73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg	81 TI 204	82 Pb 207	83 Bi 209	84 Po (210)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 Série dos Actinidios	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Uun	111 Uuu	112 Uub	204	207	209	(210)	[(210)	(222)
(LLC)	(LLO)			los Lant	anídios					1	1	7					
Número Símb	Atômico olo		57 La 139	58 Ce 140	59 Pr 141	60 Nd 144	61 Pm (147)	62 Sm 150	63 Eu 152	64 Gd 157	65 TB 159	66 Dy 163	67 Ho 165	68 Er 167	69 Tm 169	70 Yb 173	71 Lu 175
Massa Atómica Série dos Actinídios							1	1.70									
() - N.º de massa do Isótopo mais estável			89 Ac (227)	90 Th 232	91 Pa (231)	92 U 238	93 Np (237)	94 Pu (242)	95 Am (243)	96 Cm (244)	97 Bk (247)	98 Cf (251)	99 Es (254)	100 Fm (253)	101 Md (256)	102 No (254)	103 Lr (257)
Abreviaturas: (s) sólido (1) = líquido (g) = gás (aq) = aquoso [A] = concentração de A em mol/L																	

* PARA A CORREÇÃO, TODAS AS QUESTÕES DEVEM ESTAR RESOLVIDAS À CANETA EM FOLHA SEPARADA E ENTREGAR JUNTO COM A LISTA DE QUESTÕES.

QUESTÃO 01. O alumínio é utilizado como redutor de óxidos, no processo denominado de aluminotermia, conforme mostra a equação química:

$$8 \text{ Al}_{(s)} + 3 \text{ Mn}_3 O_{4(s)} \rightarrow 4 \text{ Al}_2 O_{3(s)} + 9 \text{Mn}_{(s)}$$

Observe a tabela:

Substância	Entalpia de formação
	(∆H à 298K)
Al ₂ O _{3(s)}	-1667,8
Mn ₃ O _{4(s)}	-1385,3

Segundo a equação acima, para a obtenção do $Mn_{(s)}$, qual é a variação de entalpia, na temperatura de 300 K, em KJ?

QUESTÃO 02. O fenol (C₆H₅OH) é um composto utilizado industrialmente na produção de plásticos e corantes. Sabe-se que sua combustão total é representada pela equação:

$$C_6H_5OH(1) + 7O_{2(g)} \rightarrow 6CO_{2(g)} + 3H_2O_{(g)}$$

 $\Delta H = -3052 \text{KJ/mol}$

e que as entalpias de formação do $CO_{2(g)}$ e $H_2O_{(g)}$ valem, respectivamente: -395kJ/mol e -286kJ/mol a $25^{\circ}C$ e 1 atm. Qual é a entalpia de formação do fenol, a $25^{\circ}C$ e a 1 atm, em kJ/mol?

QUESTÃO 03. Calcule o valor da entalpia de combustão de um mol do benzeno (C₆H₆) sabendo que ele apresenta entalpia de formação no estado líquido igual a +49 kJ/mol, que o CO₂ gasoso apresenta –395 kJ/mol e que o valor da água líquida é de –286 kJ/mol.

$$C_6H_6 + 15/2O_2 \rightarrow 6 CO_2 + 3 H_2O$$

QUESTÃO 04. Considere o seguinte gráfico:

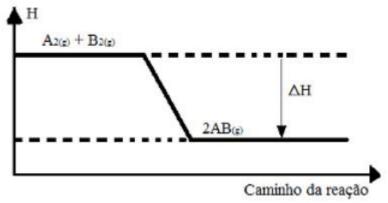


Gráfico de variação de entalpia de uma reação genérica

De acordo com o gráfico acima, preencha as lacunas e justifique sua resposta abaixo.

"A variação da entalpia, ΔH, é ______; a reação é _______ porque se processa ______ calor."

QUESTÃO 05. Quando 0,5 mol de etanol líquido sofre combustão total sob pressão constante, produzindo CO₂ e H₂O gasosos, a energia liberada é de 148 kcal. Na combustão de 6,00 mol de etanol, nas mesmas condições, qual é a entalpia dos produtos, em relação à dos reagentes?

QUESTÃO 06. Analise as reações termoquímicas a seguir com os seus respectivos valores de variação de entalpia e classifique-as como endotérmicas ou exotérmicas, justificando:

- A) $CO_{(g)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{2(g)} > \Delta H = -282,6 \text{ kJ}$
- B) $S_{\text{(rômbico)}} + O_{2(g)} \rightarrow SO_{2(g)} > \Delta H = -296.6 \text{ kJ}$
- C) $H_{2(g)} + \frac{1}{2} O_{2(g)} \rightarrow H_2 O_{(g)} > \Delta H = -241,6 \text{ kJ}$
- D) $N_{2(g)} + O_{2(g)} \rightarrow 2 NO_{(g)} > \Delta H = +179,7 \text{ kJ}$
- E) $Na_{(s)} + H_2O_{(l)} \rightarrow NaOH_{(aq)} + \frac{1}{2}H_{2(g)} > \Delta H = -140 \text{ kJ}$

QUESTÃO 07. Qual será o calor absorvido na reação a seguir quando a quantidade de carbono for igual a 72 g? $SnO_{2(g)} + 2 \ C_{(grafite)} \rightarrow Sn_{(s)} + 2 \ CO_{(g)} > \Delta H = 360 \ kJ$

QUESTÃO 08. Veja a seguir a reação de cloração do etano na presença de luz:

Sabe-se que ela apresenta uma variação de entalpia igual a -35 Kcal.mol⁻¹.Considerando os valores das energias de ligação presentes na reação, determine a energia da ligação C-Cl no composto CH₃Cl.

 $C-H = 105 \text{ kcal.mol}^{-1}$

 $Cl-Cl = 58 \text{ kcal.mol}^{-1}$

 $H-Cl = 103 \text{ kcal.mol}^{-1}$

 $C-C = 368 \text{ kcal.mol}^{-1}$

QUESTÃO 09. Observe a tabela referente aos valores de entalpias de ligação:

Ligação	∆H (kJ.mol ⁻¹)
C-H	414
C=O	716
О—Н	439
C-O	339
C-C	368
0=0	500

Com base nos valores fornecidos, qual será o valor do ΔH da combustão de 2 mol de metano?

QUESTÃO 10. A ligação covalente que mantém os átomos de nitrogênio e oxigênio unidos no óxido nítrico, NO, não é explicada pela regra do octeto, mas a sua energia de ligação pode ser calculada a partir dos dados fornecidos abaixo. Dados:

Energia de ligação N≡N: 950 kJ.mol⁻¹; Energia de ligação O=O: 500 kJ.mol⁻¹; Entalpia de formação do NO: 90 kJ.mol⁻¹.

$$N_2 + O_2 \rightarrow 2 NO$$

A partir dessas informações, qual é a energia de ligação entre os átomos de nitrogênio e oxigênio no óxido nítrico?

QUESTÃO 11.
$$C_2H_{4(g)} \rightarrow 2 C_{(g)} + 4 H_{(g)}$$
 $\Delta H = 542 \text{ kcal/mol}$

Na reação representada pela equação anterior, sabe-se que a energia da ligação C — H é igual a 98,8 kcal/mol. A partir dos dados acima. Qual é o valor da energia de ligação C = C, em kcal/mol?

QUESTÃO 12. Durante a Guerra do Golfo, os soldados aqueciam seus alimentos utilizando-se de recipientes de plástico que continham magnésio metálico. Para que houvesse o aquecimento, pequenas quantidades de água eram adicionadas ao magnésio, produzindo hidróxido de magnésio e hidrogênio. O diagrama de entalpia dessa reação é mostrado na figura abaixo. Com relação a esse diagrama, analise-0 e anote as conclusões .

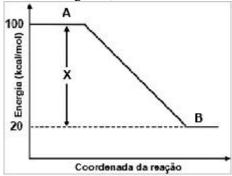


Gráfico da entalpia do hidróxido de magnésio

QUESTÃO 13. Dado o gráfico:

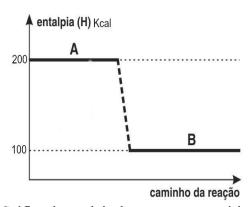


Gráfico de entalpia de uma reação genérica

Para um reação genérica representada pela equação:

 $A \rightarrow B$

Qual será o valor da variação de entalpia do processo?

QUESTÃO 14. Considere as afirmações a seguir, segundo a Lei de Hess. Analise cada uma e reescreva as afirmações corrigindo-as:

- I-O calor de reação (ΔH) depende apenas dos estados inicial e final do processo.
- II As equações termoquímicas podem ser somadas como se fossem equações matemáticas.
- III Podemos inverter uma equação termoquímica desde que se inverta o sinal de ΔH .
- IV Se o estado final do processo for alcançado por vários caminhos, o valor de ΔH dependerá dos estados intermediários através dos quais o sistema pode passar.

QUESTÃO 15. "De acordo com a Lei de Hess, "A variação de entalpia (ΔH) em uma reação química depende apenas dos estados inicial e final da reação, independentemente do número de reações." Desse modo, a partir das equações termoquímicas fornecidas abaixo e aplicando os princípios dessa lei, qual é o valor da entalpia-padrão de combustão do etanol?

$$C(graf) + O2(g) \rightarrow CO2(g)$$
 $\Delta H0f = -395 \text{ kJ} \cdot \text{mol-1}.$

H2 (g) +
$$\frac{1}{2}$$
 O2 (g) \rightarrow H2O (l) Δ H0f = -288 kJ·mol-1.

2 C(graf) + 3 H2 (g) +
$$\frac{1}{2}$$
 O2 (g) → C2H6O (l) Δ H0f = -278 kJ·mol-1."

QUESTÃO 16. O gás hilariane (N₂O) tem características anestésicas e age sobre o sistema nervoso central, fazendo com que as pessoas riam de forma histérica. Sua obtenção é feita a partir de decomposição térmica do nitrato de amônio (NH₄NO₃), que se inicia a 185 °C, de acordo com a seguinte equação:

$$NH_4NO_{3(s)} \rightarrow N_2O_{(g)} + 2H_2O_{(g)}$$

No entanto, o processo é exotérmico e a temperatura fornecida age como energia de ativação. Sabe-se que as formações das substâncias N₂O, H₂O e NH₄NO₃ ocorrem por meio das seguintes equações termoquímicas:

$$N_{2(g)}+\frac{1}{2}\ O_{2(g)} \longrightarrow N_2 O_{(g)}-19{,}5$$
 kcal

$$H_{2(g)} + \frac{1}{2} O_{2(g)} \rightarrow H_2 O_{(g)} + 57.8 \text{ kcal}$$

$$N_{2(g)} + 2 H_{2(g)} + 3/2 O_{2(g)} \rightarrow NH_4NO_{3(s)} + 87,3 \text{ kcal}$$

Qual é a quantidade de calor liberada, em Kcal, no processo de obtenção do gás hilariante?

QUESTÃO 17. Um dos combustíveis que vem sendo utilizado em substituição à gasolina é o gás propano (C₃H₈). Isso porque ele é um combustível econômico e menos poluente, preocupações fundamentais no que tange aos fatores econômicos e ambientais. As equações termoquímicas abaixo antecedem a combustão do propano, ou seja, são as equações fundamentais para a queima do propano:

I.
$$C_{(graf)} + O_{2(g)} \rightarrow CO_{2(g)} \rightarrow H = -393,5 \text{ kJ/mol}$$

II.
$$H_{2(g)} + \frac{1}{2} O_{2(g)} \rightarrow H_2 O_{(g)} \rightarrow H = -241.8 \text{ kJ/mol}$$

III. 3
$$C_{(graf)} + 4 H_{2(g)} \rightarrow C_3 H_{8(g)} \rightarrow H = -103.8 \text{ kJ/mol}$$

Baseando-se nessas informações, assinale a alternativa que apresenta a quantidade de calor liberada a partir da combustão de 4,0 Kg de gás propano.

QUESTÃO 18. Considere os seguintes dados:

$$C_{(gr)} + 2 H_{2(g)} \otimes CH_{4(g)} D H = -18 \text{ kcal/mol de } CH_4$$

$$C_{(g)} + 2 H_{2(g)} \otimes CH_{4(g)} D H = -190 \text{ kcal/mol de } CH_4$$

Quantos kcal são necessários para vaporizar 240 g de carbono grafítico (Dados: massa atômica do carbono = 12)?

QUESTÃO 19. A entalpia da reação (I) não pode ser medida diretamente em um calorímetro porque a reação de carbono com excesso de oxigênio produz uma mistura de monóxido de carbono e dióxido de carbono gasosos. As entalpias das reações (II) e (III), a 20 ° C e 1 atm, estão indicadas nas equações termoquímicas a seguir:

I.
$$2 C_{(s)} + O_{2(g)} \otimes 2 CO_{(g)}$$

II.
$$C_{(s)} + O_{2(g)} \otimes CO_{2(g)} D H = -394 \text{ kJ.mol}^{-1}$$

III.
$$2 \text{ CO}_{(g)} + O_{2(g)} \otimes 2 \text{ CO}_{2(g)} D H = -283 \text{ kJ.mol}^{-1}$$

- A) Calcular a entalpia da reação (I) nas mesmas condições.
- B) Considerando o calor envolvido, classificar as reações (I), (II) e (III).

QUESTÃO 20. Calcule a energia liberada na queima metabólica de glicose:

$$C_6H_{12}O_{6 (aq)} + 6 O_{2 (g)} \otimes 6 CO_{2 (aq)} + 6 H_2O_{(l)}$$

use os valores das energias (em kJ/mol) das seguintes reações:

$$C_{(s)} + O_{2(g)} \otimes CO_{2(aq)} D H = -413$$

$$H_{2 (g)} + \frac{1}{2} O_{2 (g)} \otimes H_2 O_{(l)} D H = -286$$